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Abstract 

The phosphatase and tensin homolog (PTEN) protein, encoded by the PTEN gene on chromosome 10, is a nega-
tive regulator of the phosphoinositide 3-kinase (PI3K) signaling pathway. Loss of PTEN has been linked to an array of 
human diseases, including neurodevelopmental disorders such as macrocephaly and autism. However, it remains 
unknown whether increased dosage of PTEN can lead to human disease. A recent human genetics study identifies 
chromosome 10 microduplication encompassing PTEN in patients with microcephaly. Here we generated a human 
brain organoid model of increased PTEN dosage. We showed that mild PTEN overexpression led to reduced neural 
precursor proliferation, premature neuronal differentiation, and the formation of significantly smaller brain organoids. 
PTEN overexpression resulted in decreased AKT activation, and treatment of wild-type organoids with an AKT inhibi-
tor recapitulated the reduced brain organoid growth phenotypes. Together, our findings provide functional evidence 
that PTEN is a dosage-sensitive gene that regulates human neurodevelopment, and that increased PTEN dosage in 
brain organoids results in microcephaly-like phenotypes.
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Loss of function mutations in the PTEN tumor suppres-
sor gene are implicated in a wide spectrum of human 
diseases. In the central nervous system, loss of PTEN 
leads to brain cancers, as well as non-malignant con-
ditions including macrocephaly, autism, and epilepsy 
[1]. However, the impact of PTEN overexpression on 
human health remains largely unknown. Partial trisomy 
of chromosome 10, including distal 10q where PTEN 
resides, has been found in patients with severe develop-
mental disorders including craniofacial malformations. 
Recently, a 10q23.31 microduplication has been identi-
fied in patients with autosomal dominant primary micro-
cephaly [2]. PTEN is one of the 3 genes duplicated in this 
region, and is hypothesized to be the causal gene for the 

condition. However, the functional impact of PTEN over-
expression on human neurodevelopment has not been 
experimentally examined.

The advent of human pluripotent stem cells (hPSCs) 
and 3-dimensional brain organoid technologies provides 
a new avenue to investigate human neurodevelopment 
in  vitro. We and others have previously utilized these 
tools to model primary microcephaly caused by genetic 
mutations [3–6] and environmental factors such as the 
Zika virus [7–9]. To understand the role of PTEN loss 
of function in regulating human neurodevelopment, we 
have previously generated PTEN knockout hPSCs [10]. 
PTEN knockout brain organoids are significantly larger 
in size, mimicking the macrocephalic conditions seen in 
patients with PTEN loss of function mutations.

Here, we generated an hPSCs-derived brain organoid 
model of mild PTEN overexpression (PTEN-OE) to study 
the effect of increased PTEN dosage on neurodevelop-
ment. Wild-type WIBR3 hPSCs were transduced with 
lentivirus expressing a PTEN-GFP fusion cDNA [10]. 
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GFP-positive subclones were selected (Fig. 1A) and exam-
ined for their PTEN expression levels using quantitative 
RT-PCR. We identified three subclones with mild over-
expression of PTEN (Fig.  1B) and further verified their 
PTEN protein levels using immuno-blotting (Fig.  1C, 

D). Three subclones of the same parental WIBR3 hPSCs 
were used as controls. We next generated forebrain orga-
noids by directed differentiation [4, 10]. Equal numbers 
of control and PTEN-OE hPSCs were aggregated to form 
embryoid bodies of similar size and morphology (Fig. 1F 

Fig. 1 PTEN-OE brain organoids model human microcephaly. A Immuno-staining of control and PTEN-OE hPSCs for markers of pluripotency 
(OCT4). Presence of GFP indicates overexpression of PTEN-GFP fusion protein. B Quantitative RT-PCR shows increased expression of PTEN in 
PTEN-OE hPSCs. Each data point represents one independent hPSC line (n = 3 for each group). C Immuno-blotting analysis showsincreased total 
PTEN protein level (higher molecular weight band indicates PTEN-GFP fusion protein) in PTEN-OE hPSCs. D Quantification of total PTEN protein 
levels (endogenous PTEN and PTEN-GFP) in control and PTEN-OE hPSCs, normalized to Actin. Each data point represents one independent 
hPSC line (n = 3 for each group). E Representative images of control and PTEN-OE organoids at 6 weeks. F Quantification of control and PTEN-OE 
organoid size at around 1 week (day 7-10, 3 weeks (day 21-24), and 5-6 weeks (day 35-42). Each data point represents the area of a single organoid. 
N = 18 for each group at each time point from 3 hPSC lines and 2 independent differentiation experiments. ANOVA revealed significant effects 
of age  (F2,102=669.4, p < 0.0001), genotype  (F1,102=34.65, p < 0.0001), and the interaction between the two  (F2,102=12.20, p < 0.0001). G and H 
Representative images (G) and quantification (H) of KI67 immuno-staining in 3-week-old control and PTEN-OE brain organoids. White dashed lines 
indicate the apical edge of the ventricular zone. Each data point represents one hPSC line in an independent differentiation, from the average 
of measurement from 3 organoids. N = 6 for each group from 3 hPSC lines and 2 independent differentiation experiments. I and J Quantitative 
RT-PCR analysis of neural precursor markers SOX2, TBR2 (I) and neuronal markers DCX, CTIP2 (J) in 3-week-old control and PTEN-OE brain organoids. 
Each data point represents one independent hPSC line (n = 3 for each group). K Representative images of immuno-staining for DCX and NESTIN 
(upper panels), CTIP2 and SOX2 (lower panels) in 3-week-old control and PTEN-OE organoids. L Quantification of CTIP2 immuno-staining in 
3-week-old control and PTEN-OE brain organoids. Each data point represents one hPSC line in an independent differentiation, from the average 
of measurement from 3 organoids. N = 6 for each group from 3 hPSC lines and 2 independent differentiation experiments. M Immuno-blotting 
analysis shows reduced phospho-AKT protein level in 3-week-old PTEN-OE brain organoids generated from hPSC line Control-1, Control-2, 
PTEN-OE-1, and PTEN-OE-2. N Quantification of immuno-blotting results (Figure  1M and Additional file 1: Figure S1D) shows reduced phospho-AKT 
to total AKT ratio in 3-week-old PTEN-OE brain organoids. Each data point represents one hPSC line in an independent differentiation. N = 4 for 
each group from 3 hPSC lines and 2 independent experiments. O Representative images of 6-week-old brain organoids treated with vehicle or AKT 
inhibitor MK-2206 (100 nM). P Size quantification of vehicle and MK-2206 treated brain organoids at 5-6 weeks. Each data point represents the area 
of a single organoid. N = 18 for each group from 3 hPSC lines and 2 independent differentiation experiments. Q and R Quantitative RT-PCR analysis 
of neural precursor markers SOX2, TBR2 (Q) and neuronal markers DCX, CTIP2 (R) in vehicle and MK-2206 treated 6-week-old brain organoids. Each 
data point represents one independent hPSC line (n = 3 for each group).Results are mean ± SEM. *p<0.05, **p<0.01, ***p<0.001
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and Additional file  1: Figure S1A, B). These embryoid 
bodies were cultured in neural differentiation medium 
and embedded in Matrigel droplets to form forebrain 
organoids. We observed that the growth of PTEN-OE 
organoids was slower compared to controls, and PTEN-
OE organoids were significantly smaller at 5–6 weeks 
(Fig.  1E, F). PTEN overexpression in embryoid bodies 
and organoids was confirmed using quantitative RT-PCR 
(Additional file  1: Figure S1C). To investigate whether 
the reduced organoid growth was linked to altered cel-
lular proliferation, we next performed immuno-staining 
for Ki67. Within the ventricular zone where neural pre-
cursors reside, fewer Ki67-positive cells were observed 
in 3-week-old PTEN-OE organoids compared to their 
isogenic controls (Fig.  1G, H). This reduction coincided 
with decreased neural precursor markers (SOX2, TBR2) 
as measured by quantitative RT-PCR in 3-week-old orga-
noids (Fig.  1I). Because reduced neural precursor pro-
liferation may lead to cell cycle exit and differentiation, 
we next examined the level of neuronal markers DCX 
and CTIP2 (Fig. 1J–L). At 3 weeks, PTEN-OE organoids 
expressed increased levels of DCX and CTIP2 transcripts 
(Fig.  1J). Immuno-staining further confirmed that while 
few DCX- and CTIP2-positive neurons were present in 
control organoids, they were more abundant in PTEN-
OE organoids (Fig. 1K, L). Therefore, our data indicates 
that increased dosage of PTEN reduces neural precursor 
proliferation, promotes premature neuronal differentia-
tion, and results in the formation of significantly smaller 
brain organoids, mimicking the microcephalic condition 
seen in patients with 10q23.31 microduplication.

To investigate the molecular signaling that contributed 
to the cellular phenotypes, we next performed immuno-
blotting for activated (phosphorylated) AKT. Consistent 
with its function as a negative regulator of the PI3K-AKT 
pathway, we found that PTEN-OE organoids had reduced 
level of phospho-AKT (Fig. 1M, N and Additional file 1: 
Figure S1D). Because PTEN has functions dependent and 
independent of AKT activation, we investigated whether 
AKT inhibition in control organoids could recapitulate 
the PTEN-OE phenotype. We generated brain organoids 
from control hPSCs in the continuous presence of vehi-
cle or 100 nM MK-2206, a known AKT inhibitor, starting 
from day 1 of embryoid body formation. We have previ-
ously used MK-2206 to inhibit the aberrant AKT acti-
vation in PTEN knockout brain organoids and showed 
that it was effective in restoring normal organoid growth 
[10]. Here we found that MK-2206 treated organoids 
were significantly smaller than vehicle treated controls 
at 5–6 weeks (Fig. 1O, P). Quantitative RT-PCR demon-
strated that MK-2206 treatment led to decreased level of 
neural precursor markers (SOX2, TBR2) and increased 
presence of neuronal markers (DCX, CTIP2) (Fig.  1Q, 

R). The chronic treatment of MK-2206 mimicked the sys-
temic overexpression of PTEN in patients and the in vitro 
organoid cultures. We further investigated the impact 
of short-term treatment of MK-2206 on hPSCs-derived 
neural precursors. We found that neural precursors cul-
tured in the presence of growth factors (FGF2 and insu-
lin) and 100 nM MK-2206 for 7 days showed reduced 
AKT activity, as measured by the level of phospho-AKT 
(Additional file  1: Figure S2A, B) and phospho-S6, a 
downstream target of the AKT-mTOR pathway (Addi-
tional file 1: Figure S2A and C). While this treatment did 
not reduce SOX2 transcript level, it led to a significant 
decrease in TBR2, suggesting TBR2-positive intermedi-
ate progenitors may be more acutely vulnerable to AKT 
inhibition (Additional file 1: Figure S2D). Together, these 
findings suggest that increased dosage of PTEN leads to 
microcephaly in vitro by reducing AKT pathway activity.

In summary, our study provides functional evidence 
that increased dosage of PTEN contributes to impaired 
neurodevelopment in  vitro. Given the known role of 
loss of PTEN in disorders including autism and mac-
rocephaly, this new insight places PTEN amongst 
other dosage-sensitive causal genes (such as MECP2, 
SHANK3, SCN2A, UBE3A) for neurodevelopmental 
disorders. These findings are consistent with human 
genetics findings that aberrant activation and inhibition 
of the PI3K-AKT signaling pathway are both implicated 
in abnormal brain formation [11–14]. Future studies 
utilizing the hPSCs-derived brain organoid platform 
may provide additional insights into the disease etiol-
ogy and therapeutic options for PTEN-related neurode-
velopmental disorders.

The WIBR3 human embryonic stem cell line was 
approved for use by the Stem Cell Oversight Committee 
of the Canadian Institutes of Health Research, and the 
Research Ethics Board of the Hospital for Sick Children.
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